News & Events

News & Events

Kenmore Air to help turn 100 Chinese turboprops into seaplanes

By Dominic Gates
Seattle Times aerospace reporter

Kenmore Air Harbor, parent company of the Pacific Northwest floatplane company, quietly landed a China contract worth about $40 million during Chinese President Xi Jinping’s visit here.

Kenmore President Todd Banks said state-owned Aviation Industry Corporation of China (AVIC) signed an agreement with Kenmore to design, certify and manufacture the pontoon floats that will convert 100 Chinese-made Harbin Y-12 twin-engine turboprops into seaplanes.

EDO Floats, a subsidiary acquired by Kenmore in 1998 that has designed and built aluminum seaplane floats since the 1920s, will oversee the certification by the Federal Aviation Administration. The U.S. certification is accepted by the Civil Aviation Administration of China (CAAC).

Banks said one Chinese Y-12 airplane will fly over to Seattle in January to be retrofitted with the new floats and to conduct certification flights.

TLG Aerospace, an engineering-services company on Lake Union near Kenmore’s seaplane base, will design the airplane modifications and process certification of the parts. The carbon-fiber floats will be manufactured by composites-fabrication company CUG in Scappoose, Ore.

Banks estimates the contract will create about 20 jobs in Washington and Oregon.

Kenmore expects to start shipping sets of floats to China toward the end of 2017.

TLG Aerospace is First MSC Apex User in North America

MSC released their Apex Computer Aided Engineering (CAE) system on September 30, 2014. Apex is the world’s first computational parts based CAE system based on modern computational capabilities. MSC Apex provides an efficient and satisfying workflow to complete CAE tasks – particularly modeling and meshing tasks which were time consuming and frustrating using traditional programs.

TLG Aerospace is proud to be the first MSC Apex user in North America. We are seeing immediate efficiency and process improvements from the use of Apex for modeling and meshing.

For more about the MSC Apex system, see the MSC press release at http://www.mscsoftware.com/node/3859

TLG Adds Structural Design and Stress Analysis Capabilities!

TLG Aerospace is pleased to announce an expansion of our core aerospace engineering services by adding in-house stress analysis and design capabilities. Since its founding in 2008, TLG has continued to add specialized engineering skills to complement our core loads and dynamic analysis services. With the addition of experienced stress analyst and design engineers, TLG Aerospace now provides even more value to our existing and future customers by offering an enhanced integrated engineering services solution. For additional information on TLG’s stress and design capabilities, please contact Ian Draycott at Ian.Draycott@tlgaerospace.com

TLG Presents Flutter Methods Paper at MSC User’s Conference

On Tuesday, May 7th, TLG Aerospace’s Engineering Manager, Robert Lind, presented a paper titled “MSC Nastran Aeroelasticity for Aircraft Certification”. This presentation focused on the use of MSC Nastran for certification level analysis. Specific examples of MSC Nastran/Patran and related tool usage were shown for real world certification projects. Attendees will gained an appreciation of the ability of these tools and procedures to provide critical certification data at the highest required levels of fidelity (FAA and international). Analysis types and levels of detail were also summarized for earlier steps of the design cycle.

TLG Announces New Flutter DER

TLG Aerospace is pleased to announce our Engineering Manager, Robert Lind, has recently received his DER Certification in Flutter for both 14 CFR Parts 23 and 25 airplanes.

Robert has actively participated in multiple FAA certification projects involving analytical and flight test flutter clearance for small and large airplanes. He has expertise in static and dynamic aeroelasticity, flutter analysis and flight test, steady and unsteady aerodynamics and test validation, structural dynamics and GVT validation, FAA and foreign airworthiness authority requirements, Advisory Circular and Policy requirements, and certification procedures.

As part of his 22 years of aerospace experience, Robert has 12 years of experience in static and dynamic aeroelastic modeling and analysis for FAA and EASA certification. Robert has worked with most of the current and flutter DERs and FAA flutter staff and has developed strong working relationships within the dynamic aeroelasticity community.

TLG Announces New Lead Engineers

TLG Aerospace is pleased to announce Dr. Josh Sementi and Mr. Andrew McComas have joined the team as lead engineers with responsibilities for loads, dynamics, flutter, and aerodynamics.

Josh Sementi has thirteen years of aerospace engineering experience including a PhD in Aerospace Engineering from the University of Washington. He joins TLG from Aviation Partners Boeing where he led the loads and dynamics engineering department in support of Supplemental Type Certificates for winglet installations on Boeing 737 Next Generation, 757, and 767 transport aircraft; and Dassault Falcon 2000 business jets.

Andrew McComas has nine years of aerospace engineering experience including an M.S. in Aerospace Engineering from the University of Washington. He joins TLG from Analytical Methods (AMI) where he led the engineering department in support of new aircraft designs, aerodynamic modifications and improvements, and new product development.

Josh and Andrew will be responsible for leading TLG’s engineering staff and program execution.

TLG Makes Better Aircraft Everyday with MSC Software

TLG is honored to be featured in the latest edition of MSC Software’s magazine, Simulating Reality. Check out Robert Lind’s article to learn how TLG’s engineers use MSC Nastran and Patran for aircraft design, analysis and certification for loads, dynamics and flutter.

TLG Engineer, Matt Knapp, Wins CD-Adapco Competition

TLG is proud to recognize Matt Knapp for winning the sixth annual CD-Adapco CAE Post Processing Contest for his image of NASA X-34 Hypersonic Re-Entry Simulation. His image is featured in the 2012 calendar – www.cd-adapco.com/news/2011/12-07_calendar.html.

Hypersonic Flow on the X-34 with Adaptive Mesh Refinement

TLG uses the latest version of CD-adapco’s Navier Stokes Solver STAR-CCM+ for Computational Fluid Dynamics (CFD) calculations. Whenever there’s a little down time, we like to keep the solver running on problems which expand both our knowledge and our validation database for the code. One good example of this is the NASA X-34 Vehicle. The X-34 was a technology demonstrator intended to help develop the reusable launch vehicle technology by making frequent hypersonic, sub-orbital hops followed by a fast turn-around. A lot of wind tunnel testing was done on the vehicle, which unfortunately never flew after funding priorities changed.

For this CFD experiment, TLG decided to test the CCM+ adaptive mesh refinement capability at a Mach 6, 15° angle of attack re-entry condition for the X-34 and compare the resulting shock angles to the Schlieren images given in AIAA-98-0881.

Initial Mesh Generation
Normally CFD mesh generation provides maximum refinement (smallest size) only at the areas of high curvatures near the vehicle, and then the cell sizes grow with distance into the free stream. For subsonic flows, this works well and the quickly growing cell sizes keep memory and CPU requirements reasonable. This approach provides the initial mesh for the X34 as shown in Figure 1, which is a Cartesian off-body mesh with trimmed cells at the body interface.

However, for hypersonic flow there is a detached shock, like the bow wave of a boat. Since aerodynamics change very quickly across a shock (by definition), and since the propagation of the shock into the far field affects the accuracy of the solution, it will be necessary to refine the off-body mesh to capture the shock in 3D.

Mesh Refinement

In order to place more cells in the location of the shock, a CCM+ “user defined field function” was created, which marked all the grid cells in the volume solution with Mach 5.88 to 5.99 – i.e. just below the free stream Mach number. In the initial very coarse off-body grid, this results in the big blocky blue cells shown in Figure 2, which is a 2D section taken at the centerline of the volume mesh. The mesher was then re-run with a small cell size refinement dictated by the field function, the solution re-started and converged to a sharper shock in the far field. The entire process was repeated a second time to finally arrive at the off-body mesh with localized refinement along the major shocks as shown in Figure 3. Because the solution could be interpolated to the new mesh and restarted each time, the additional run times as the mesh density increased were significantly reduced from a ‘clean start’ condition.

Shock Angles and Experimental Data
The real check on the method comes with comparison to experimental data. This was done by over-laying the CFD side view against the Schlieren images published in AIAA-98-0881, as shown in Figure 4. While the CFD is a 2D slice through a 3D solution, the Schieren is 3D, but the strongest shocks are still going to be the nose in the 2D plane allowing for easy comparison to the CFD solution. The upper shock angle shows a very nice correlation with the computational result, and the lower shock angle is very close, less than two degrees difference, as shown by the red circles. The final image shows the 3D nature of the full solution by putting Mach contours on a series of six cut planes along the body.